
A non-rigid cluster rewriting approach to solve

systems of 3D geometric constraints

Hilderick A. van der Meiden and Willem F. Bronsvoort

Faculty of Electrical Eng., Mathematics and Computer Science,

Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands

H.A.vanderMeiden@tudelft.nl / W.F.Bronsvoort@tudelft.nl

August 27, 2009

Abstract

We present a new constructive solving approach for systems of 3D
geometric constraints. The solver is based on the cluster rewriting ap-
proach, which can efficiently solve large systems of constraints on points,
and incrementally handle changes to a system, but can so far solve only a
limited class of problems. The new solving approach extends the class of
problems that can be solved, while retaining the advantages of the cluster
rewriting approach. Whereas previous cluster rewriting solvers only de-
termined rigid clusters, we also determine two types of non-rigid clusters,
i.e. clusters with particular degrees of freedom. This allows us to solve
many additional problems that cannot be decomposed into rigid clusters,
without resorting to expensive algebraic solving methods. In addition to
the basic ideas of the approach, an incremental solving algorithm, two
methods for solution selection, and a method for mapping constraints on
3D primitives to constraints on points are presented.

keywords: geometric constraint solving, cluster rewriting, solution selec-
tion

1 Introduction

Geometric constraints are used in current CAD systems to specify dimensions
in 2D sketches and to position parts in 3D assemblies. To create and position
geometry such that a system of constraints is satisfied, the system is solved by
a geometric constraint solver, which is part of the CAD system.

The most successful geometric constraint solvers are so-called constructive
solvers, which determine a decomposition of a problem into generically rigid
subproblems, known as clusters. These clusters are solved independently, and

1

(a) graphical representation

Angle(A, B, C) Angle(A, D, C)
Angle(A, D, E) Angle(A, F, E)
Angle(B, A, C) Angle(C, A, D)
Angle(D, A, E) Angle(E, A, F)
Distance(B, F)

(b) textual representation

Figure 1: System of constraints on points [A, . . . , F]. An angle constraint is
represented graphically by an arc between dashed lines. A distance constraint
is represented graphically by a two-sided arrow.

the solutions of the clusters are used to construct a solution for the complete
problem. The advantages of using constructive solvers in CAD, and require-
ments for such solvers, are discussed in [1].

The simplest constructive solving approach is the cluster rewriting approach,
also referred to as the bottom-up approach. In this approach, patterns of ge-
ometric constraints that are known to be generically rigid, are recognised as
clusters. Certain patterns of clusters are also recognised, and merged into larger
clusters. If the problem is well-constrained, a single cluster will remain at the
end of the rewriting process.

To be able to efficiently determine solutions for problems with incremental
changes, the cluster rewriting approach is very attractive. It is fast and an in-
cremental algorithm can be easily implemented. However, the cluster rewriting
approach can only be used to solve a relatively small class of problems, in par-
ticular, problems that can be decomposed into fairly small rigid subproblems.

Consider, for example, the 2D constraint problem in Figure 1. Here, we have
a number of points (the variables), constrained by several angle constraints, and
one distance constraint. The whole constraint system is rigid, but there is no
subset of variables and constraints that forms a rigid system. A solver based on
the cluster rewriting approach will not be able to solve the system, because it
cannot find any rigid clusters, unless the solver has been explicitly programmed
to recognise this particular system as a cluster.

This problem has been recognised in constraint solving literature, and vari-
ous solutions have been proposed. Along with more general background, these
are discussed in Section 2.

Previous solutions are mostly 2D and not compatible with the cluster rewrit-
ing approach. Therefore, we present a new 3D solving algorithm that identifies
not only rigid clusters, but also two types of non-rigid clusters, in particular
scalable clusters and radial clusters. The three types of clusters we distinguish

2

are defined in Section 3.
Our solving approach, based on cluster rewriting, is presented in Section 4.

The basic idea is to exhaustively apply a small set of rewrite rules to a system of
rigid and non-rigid clusters. The set of clusters remaining when no more rewrite
rules can be applied, represents the generic solution of the system. From the
generic solution, we can compute particular solutions, and determine whether
the system is well-constrained, underconstrained or overconstrained.

It is relatively easy to update the solution(s) of a system when changes are
made to it, i.e. when values of constraint parameters are changed, or when
constraints are added to or removed from the system. An efficient incremental
algorithm is presented in Section 5.

In general, a well-constrained problem can have a large number of solutions.
Typically, in CAD applications, only one or a few specific solutions are needed.
In Section 6, we present two methods for solution selection that can be used in
the presented solving algorithm: declarative solution selection and prototype-
based solution selection.

The cluster rewriting algorithm can only solve systems of constraints on
points, whereas in many applications constraints are imposed on 3D primitives,
e.g. planes, spheres and cylinders. Our approach to solve a system of geometric
constraints on 3D primitives is discussed in Section 7. Basically, constraints on
such primitives are mapped to a system of distance and angle constraints on
point variables. This system is then mapped to a system of rigid and non-rigid
clusters, which is solved. The solutions of the system of clusters are used to
construct the solutions for the original problem involving 3D primitives.

Some conclusions are given in Section 8.

2 Background and related work

In principle, geometric constraint problems can be considered as algebraic prob-
lems. However, generic algebraic solving methods are either too expensive for
use in interactive systems, or they cannot find all solutions for a given problem,
resulting in ambiguity and robustness problems in practice. Symbolic algebraic
methods, e.g. methods based on characteristic sets, such as Wu’s method [2],
have exponential running times in relation to the number of constraints. Nu-
merical methods, such as Newton-Raphson iteration, although fast, cannot find
all solutions to a given problem, and may not even find a solution without a
suitable starting configuration. Homotopic continuation techniques have been
used to find all solutions for small problems, e.g. the octahedral problem [3].
However, for larger problems, this technique is also too expensive, because the
number of homotopy paths grows exponentially.

Constructive solvers determine a decomposition of a problem into generi-
cally rigid subproblems, known as clusters. For 2D problems, generic rigidity is
characterised by Laman’s theorem [4]. This theorem formulates generic rigidity
for graphs, where edges in the graph correspond to distance constraints and
vertices correspond to point variables, as follows:

3

Let a graph G have exactly 2n − 3 edges, where n is the number
of vertices in G. Then G is generically rigid in R

2 if and only if
e′ ≤ 2n′ − 3 for every subgraph of G with n′ vertices and e′ edges.

In other words, Laman’s rule states that a 2D constraint problem with n

points and e distance constraints is generically rigid, or well-constrained, if and
only if e = 2n − 3, and for every subproblem with n′ points and e′ distance
constraints, e′ ≤ 2n′ − 3. If the number of constraints is smaller than specified
by the rule, the system is called underconstrained. If, for any subproblem, the
number of constraints is larger, the system is overconstrained. Note that a well-
constrained system is not necessarily consistent, i.e. depending on the actual
parameter values of the constraints there may or may not be any solutions. Also,
overconstrained systems are not necessarily inconsistent; for some values of the
constraint parameters, the system may have solutions, and is called consistently
overconstrained.

Most 2D solvers use a bottom-up cluster rewriting approach with optimised
data structures for representing systems of clusters, e.g. the graph-constructive
approach used in [5, 6, 7]. For some of these algorithms a proof of correctness
has been given, e.g. [8, 9], showing that if a system is reduced to a single cluster,
then this cluster represents a correct solution for the original system.

The cluster rewriting approach is not complete, because no set of rewrite
rules is known that will reduce all well-constrained systems, even if they consist
only of distance constraints, to a single rigid cluster. In practice this means
that some well-constrained systems may not be solved, and may be classified
incorrectly as underconstrained.

As an alternative, using Laman’s theorem, a complete top-down decompo-
sition algorithm can be devised for 2D problems, e.g. [1, 10]. However, such
a complete algorithm is expensive, and cannot deal with consistently overcon-
strained situations.

Solving geometric constraints in 3D is significantly more difficult than in 2D.
Some 3D solvers based on the cluster rewriting approach have been presented
[7, 3]. However, in 3D, the incompleteness issues of this approach are even more
severe than in 2D. Until recently, there was no 3D equivalent to Laman’s the-
orem, but a characterisation of generic well-constrainedness for 3D systems of
distance constraints has now been found [11]. This result may lead to the devel-
opment of a complete top-down algorithm for solving systems of 3D geometric
constraints. However, at the time of writing, no solving algorithm based on this
result is known.

Most 3D solvers, e.g. [12, 13, 14], create top-down decompositions using a
technique called degrees-of-freedom analysis. In general, the term ‘degrees of
freedom’ (DOF) refers to the number of parameters of a system that can be var-
ied independently, e.g. a rigid body in 3D space has 6 DOF, corresponding to
3 translational and 3 rotational parameters. In the DOF-based approach, each
constraint corresponds to a DOF reduction, and heuristic rules determine the
DOF reduction of combinations of constraints. In this way, the generic rigidity
of a problem can be determined, as well as a minimal set of rigid subprob-

4

lems. In practice, DOF-based rules correctly determine well-constrainedness
for many systems of constraints. However, the DOF-based approach is also
not complete, since current DOF-analysis techniques are based on heuristics
for well-constrainedness in 3D. In particular, DOF-based algorithms sometimes
incorrectly classify overconstrained systems as well-constrained.

The DOF-based approach can solve a larger class of problems than the clus-
ter rewriting approach, but is generally more expensive, and no incremental
algorithm is known.

When a problem cannot be decomposed into rigid clusters, it cannot be
solved efficiently with any of the previous approaches. Using the cluster rewrit-
ing approach, the system will be considered underconstrained, and no solution
will be found. Using a DOF-based approach, the system may be found to be
well-constrained, but the system will be considered as a single cluster, and must
be solved using expensive symbolic algebraic methods.

Problems that cannot be decomposed into rigid clusters can sometimes be
solved efficiently by propagating angle constraints. For example, in the problem
of Figure 1, one can derive ∡CDE = ∡CDA + ∡ADE. In this way, new
constraints can be derived, and the system can be solved by local propagation.
A matrix-based propagation algorithm for distance and angle constraints on
points in 2D is presented in [15]. A drawback of this algorithm is that a large
number of redundant distances and angles are derived, resulting in high space
and time complexity.

In [16], a constraint solving approach is presented that considers clusters
that are invariant under the direct similarity group, i.e. invariant under any
transformation that is angle preserving. This allows to decompose systems that
cannot be decomposed into the usual rigid clusters, which are invariant under
the Euclidean group, i.e. invariant under rotations and translations. A solv-
ing algorithm is presented that can solve systems of angle constraints, distance
constraints and distance-ratio constraints on points in 2D. It also supports prop-
agation of angle constraints and distance-ratio constraints.

Our solving approach, unlike the previous, works in 3D, and we identify
not one but two types of non-rigid clusters, in particular scalable clusters and
radial clusters. Scalable clusters are clusters that are invariant under the direct
similarity group, as discussed above. Radial clusters are new, and provide a
more general mechanism for propagating angles than other approaches. Thus,
it is now possible to do angle propagation in 3D, and to incorporate this in the
efficient cluster rewriting approach. The different types of clusters are described
in detail in the next section.

3 Clusters

A cluster basically represents a collection of distance and angle constraints on a
set of points. We define three types of clusters: rigid clusters, scalable clusters
and radial clusters. The type of a cluster determines which distances and angles
are constrained by it. Also, a set of configurations is associated with a cluster,

5

each of which determines an alternative set of values for the distances and angles
constrained by the cluster.
The distances δ(p, q) constrained by a cluster are defined as:

δ(p, q) =
√

(q − p) · (q − p)

and the angles ∡(p, q, r) as:

∡(p, q, r) = cos−1(
p − q

δ(p, q)
· r − q

δ(r, q)
)

where p, q, r ∈ R
2 or R

3 are points in the cluster.
By this definition, distances and angles are unsigned, i.e. δ(p, q) ≥ 0 and

0 ≤ ∡(p, q, r) ≤ π. Constraints with signed angle parameters can be mapped to
clusters with particular configurations, as will be discussed later in this section.

A configuration is a set of assignments of coordinates to point variables. For
a set of point variables A = [p1, . . . , pn], each point pi is assigned a vector vi,
and for this configuration we write: cA = {p1 = v1, p2 = v2, . . . , pn = vn}.

The actual values of the distances and angles constrained by a cluster are
determined by the configurations associated with the cluster. When there are no
configurations associated with a cluster, the cluster is unsatisfiable, i.e. there are
no solutions for this cluster. If there are several configurations associated with
a cluster, then these determine alternative values for the distances and angles,
i.e. the distance and angle values determined by one of the configurations must
be satisfied.

For a cluster with a given type and set of configurations, the distance and
angle values can be determined as follows. Suppose, the type of the cluster
specifies that the distance δ(p1, p2) is constrained, and associated with the clus-
ter are two configurations, c1 = {p1 = (0, 0, 0), p2 = (1, 1, 1)} and c2 = {p1 =
(2, 0, 0), p2 = (1, 0, 0)}. Configuration c1 specifies a constraint δ(p1, p2) =

√
3.

Alternatively, configuration c2 specifies a constraint δ(p1, p2) = 1. When solving
a system containing this cluster, one of these constraints must be satisfied.

The system of distance and angle constraints represented by a cluster, when
considered as independent constraints, can be overconstrained. However, the
values of these distance and angle constraints are determined by a configura-
tion, and therefore these constraints are in fact not independent. Because a
configuration assigns a point in R

3 to each variable in the cluster, the system
of constraints is always consistent (see Section 4). Consequently, a cluster with
one or more configurations can be used to represent a constraint, and, at the
same time, the solutions of a system of constraints.

A rigid cluster is a constraint on a set of points [p1, . . . , pn] such that the
relative position of all points is constrained, i.e. all distances and angles in the
set of points are constrained (see Figure 2(a)). This type of cluster has no
internal DOF. Note that a number of solutions may exist for the system of
distance constraints (each represented by a configuration associated with the
cluster), but these are not considered DOF. The notation for a rigid cluster on
a set of points [p1, . . . , pn] is: Rigid([p1, . . . , pn]).

6

Figure 2: Constraints imposed by different cluster types (a,b,c) and their graph-
ical representation (d,e,f).

A scalable cluster is a constraint on a set of points [p1, . . . , pn] such that
for all i, j, k ∈ [1, n] the angles ∡(pi, pj , pk) are constrained (see Figure 2(b)).
The constraint has one internal DOF, namely it may be scaled uniformly. The
notation for a scalable cluster on this set of points is: Scalable([p1, . . . , pn]).

A radial cluster is a constraint on a set of points [pc, p1, . . . , pn] such that for
all i, j ∈ [1, n] the angles ∡(pi, pc, pj) are constrained (see Figure 2(c)). Point
pc is called the centre point and points p1, . . . , pn are called the radial points.
This constraint has n internal DOF (each point p1, . . . , pn can move along a
line from the centre point). The notation for a radial cluster on these points is:
Radial(pc, [p1, ..., pn]).

We use a graphical notation for clusters, as shown in Figures 2(d)-(f). A
point variable is represented by a dot with the name of the corresponding vari-
able next to it. A rigid cluster is represented by a solid curve enclosing the set of
points constrained by the cluster. A scalable cluster is represented by a dashed
curve enclosing the set of points constrained by the cluster. Finally, a radial
cluster is represented by a circle around the centre point and lines connecting
the circle to the radial points.

Scalable clusters allow to solver to propagate angles that can be derived
in triangles and tetrahedra, i.e. ∡(ABC) = π − ∡(BCA) − ∡(CAB). Radial
clusters allow to propagate angles that can be derived by adding up concentric
angles, i.e. ∡(AMC) = ∡(AMB) + ∡(BMC). Furthermore, angle constraints
can now be represented by radial clusters, just like distance constraints are often
represented by rigid clusters in other constraint solving approaches. This results

7

(a) graphical representation

Radial(A, [B, C, D, E, F])
Radial(B, [A, C])
Radial(D, [C, A, E])
Radial(F, [A, E])
Rigid([B, F])

(b) textual representation

Figure 3: The system of clusters corresponding to the problem in Figure 1.

in a clean representation of constraint data, and a simple solving algorithm.
Distance and angle constraints on points are easily mapped to clusters and

configurations, as follows.
A distance constraint between two points is equivalent to a rigid cluster of

two points with one associated configuration. For example, a distance constraint
δ(p1, p2) = 1 can be represented by a cluster Rigid(p1, p2) and a configuration
{p1 = (0, 0), p2 = (1, 0)}. Obviously, the choice of this particular configuration
is somewhat arbitrary: infinitely many different configurations can be used to
set the distance value.

An unsigned angle constraint on three points is equivalent to a radial cluster
with one centre point and two radial points, and one associated configuration.
For example, the angle constraint ∡(p1, p2, p3) = 1

2π can be represented by a
cluster Radial(p2, [p1, p3]) and a configuration {p1 = (1, 0), p2 = (0, 0), p3 =
(0, 1)}.

In 2D, a signed angle ∡(p1, p2, p3) is uniquely defined as the angle of rotation
to transform the normalised vector p1 − p2 to the normalised vector p3 − p2. A
signed angle can be used in the construction of the configuration, resulting in a
signed angle constraint.

In 3D, an angle ∡(p1, p2, p3) is always unsigned. To define a signed angle
constraint in 3D, an additional reference point p4 is needed. Thus, a signed angle
constraint in 3D is mapped to a 4 point radial cluster, Radial(p2, [p1, p3, p4]),
and a configuration of those points. The vector p4 − p2 in the configuration is
either the left-handed or right-handed cross product (p1 − p2) × (p3 − p2). The
handedness of the cross product is not changed when the constraint parameter
is changed and the configuration is re-determined. Therefore, the orientation of
the points in the configuration can be used to select the appropriate solution, if
needed (see Section 6).

A system of distance and angle constraints on points can thus be mapped to
a system of clusters. Figure 3 shows the system of clusters corresponding to the

8

problem in Figure 1. Note that some angle constraints (e.g. ∡ADC and ∡ADE)
that are initially mapped to overlapping radial clusters (i.e. Radial(D, [A, C])
and Radial(D, [A, E]), respectively) have been merged (into Radial(D, [C, A, E])).
Merging these clusters is actually the first step of the solving algorithm, which
is explained in the next section using this example problem. However, in the
visual representation such overlapping radial clusters cannot be easily distin-
guished. To make the example easier to follow, this merging step has already
been performed here, and the result is taken as a starting point in the next
section.

4 Solving approach

To solve a system of clusters, we basically try to rewrite the system to a single
rigid cluster, by exhaustively trying to apply a set of rewrite rules. A rewrite
rule specifies a pattern, describing its input clusters, and its output cluster in
a generic way, and it specifies a procedure to determine the configurations of
the output cluster from the configurations of the input clusters. A rewrite rule
can be applied if a set of clusters is found in the system that matches the input
clusters in the pattern. The corresponding output cluster is added to the system,
and the configurations of the output cluster are determined by the procedure.

A pattern specifies a number of input clusters of a given type and a number of
pattern variables. These pattern variables are matched by the solving algorithm
to the point variables of the clusters in the system, such that the number of
variables and the type of the cluster match. A pattern may also specify that
an input cluster can match any cluster with a superset of the given variables.
If a variable name occurs several times in the pattern, it must be matched with
a single point variable that is constrained by several clusters in the constraint
system.

To determine the configurations of the output cluster of a rewrite rule, the
procedural part of the rule is applied for every combination of input cluster
configurations. Suppose, for example, that two clusters are used as the input of
a rewrite rule, and that each cluster has two configurations associated with it,
then four different configurations for the output cluster are computed.

A set of rewrite rules for 2D and 3D problems is given in Appendix A. Of
the 14 rules in total, 3 rules are specific for 2D problems, 6 rules are specific for
3D problems, and 5 more can be used in both 2D and 3D. In general, each rule
determines an output cluster with new constraints that are not in the input
clusters, either because the new cluster involves more points, or because the
new cluster is of a type with fewer DOF. We have built this rule set starting
with rules for every combination of two clusters that results in new constraints.
Then, rules were added for combinations of three clusters that cannot be solved
by using the simpler rules. In this way, rewrite rules for even more complex
subproblems might also be found.

In the remainder of this section, we show how these rewrite rules are used
to solve the problem illustrated in Figure 3. Consider Rule 7 from Appendix A.

9

Rule 7 Derive a scalable cluster from two radial clusters

Pattern: Radial(p1, [p3, p2, . . .]) ∪ Radial(p2, [p1, p3, . . .])
→ Scalable([p1, p2, p3])

Procedure: c1 × c2 → cR

cR(p1) = (0, 0, 0)
cR(p2) = (1, 0, 0)
cR(p3) = intersection

ray from cR(p1) direction ∡(c1(p3), c1(p1), c1(p2))
ray from cR(p2) direction ∡(c2(p1), c2(p2), c2(p3))

This rule can be applied (in 2D or 3D) when two radial clusters share three
points, including the centre point of each cluster. When a match is found, a
new scalable cluster (R) is added to the system, and a configuration (cR) is
computed by intersecting two rays (directed half-lines).

This rule can be applied to the problem in Figure 3, as follows. We find the
following matches:

Radial(A, [B, C, D, E, F]) ∪ Radial(B, [A, C]) → Scalable([A, B, C])
Radial(A, [B, C, D, E, F]) ∪ Radial(D, [C, A, E]) → Scalable([A, C, D])
Radial(A, [B, C, D, E, F]) ∪ Radial(D, [C, A, E]) → Scalable([A, D, E])
Radial(A, [B, C, D, E, F]) ∪ Radial(F, [A, E]) → Scalable([A, E, F])

By applying the rewrite rule to the first match, the system shown in Figure 4(a)
is obtained. Repeated application of the rule for all the matches listed above,
results in the system shown in Figure 4(b).

When a rewrite rule is applied, the input clusters may become redundant and
should be removed from the system. A cluster is redundant if all distances and
angles constrained by the cluster are also constrained by newer clusters. Thus,
an input cluster is removed from the system if all the distances and angles in
the cluster are also in the output cluster.

In the system in Figure 4(a), the cluster Radial(B, [A, C]) is redundant and
removed, because the angle ∡ABC constrained by this cluster, is also con-
strained by the newer cluster Scalable([A, B, C]). The cluster Radial(A, [B, C,-
D, E, F]), however, is not removed, even after repeated application of the rewrite
rule (result shown in Figure 4(b)), because it constrains angles that are not in
any of the scalable clusters (e.g. ∡BAF).

If a rewrite rule is defined such that its output cluster contains all distances
and angles that are in its input clusters, then all input clusters are removed
after the rule has been applied, and we say that the rewrite rule merges the
input clusters. The scalable clusters in Figure 4(b) can be merged using Rule 3
from Appendix A.
Rule 3 Merge two scalable clusters with two shared points

Pattern: Scalable(A = [p1, p2, . . .]) ∪ Scalable(B = [p1, p2, . . .])
→ Scalable(A∪ B)

Procedure: c1 × c2 → cR

10

(a) single application of Rule 7 (b) repeated application of Rule 7

(c) after applying Rule 3 (d) after removing redundant clusters

Figure 4: Intermediate results for solving the system in Figure 3.

T = rotation, translation and scaling such that p1 and p2 in c2

are mapped onto p1 and p2 in c1

cR = c1 ∪ T (c2)

This rule basically takes two scalable clusters, and combines their configurations
by rigidly transforming one of them such that the shared points between the
configurations coincide. New configurations obtained in this way are associated
with a new scalable cluster. The rule can be applied repeatedly, in the example
problem, as follows:

Scalable([A, B, C]) ∪ Scalable([A, C, D]) → Scalable([A, B, C, D])
Scalable([A, D, E]) ∪ Scalable([A, E, F]) → Scalable([A, D, E, F])
Scalable([A, B, C, D]) ∪ Scalable([A, D, E, F]) → Scalable([A, B, C, D, E, F])

Applying these rewrites results in the system shown in Figure 4(c). Now we
can remove the clusters Radial(A, [B, C, D, E, F]) and Radial(D, [C, A, E]),
because all angles in those clusters are also constrained by the newer clus-
ter Scalable([A, B, C, D, E, F]), resulting in Figure 4(d). Finally the cluster
Scalable([A, B, C, D, E, F]) can be merged with Rigid([B, F]), using the fol-
lowing rule from Appendix A.
Rule 8 Derive a rigid cluster from a scalable and a rigid cluster with two
shared points

11

Figure 5: Generic solution for the problem in Figure 3. Note that Scale(. . .)
represents a scalable cluster.

Pattern: Scalable(A = [p1, p2, . . .]) ∪ Rigid([p1, p2, . . .]) → Rigid(A)
Procedure: c1 × c2 → cR

T = scale configuration by δ(c2(p2),c2(p1))
δ(c1(p2),c1(p1))

cR = T (c1)

This rule basically scales the configuration of the input cluster, such that the
distance between the shared points becomes equal to the distance specified by
the configuration of the rigid input cluster. New configurations obtained in this
way are associated with a new rigid cluster.

The rule can be applied to the example system, resulting in a cluster Rigid-
([A, B, C, D, E, F]), which constrains all the variables of the problem. No other
rewrite rules can be (nor need to be) applied.

The generic solution of a problem is a recipe for computing all configurations
that satisfy the constraints, and consists of a set of clusters related by rewrite
rules. The generic solution of the problem of Figure 3 is shown in Figure 5.
In this figure, arrows indicate dependencies between clusters created by rewrite
rules (the rules are not explicitly represented). The clusters in the generic
solution can be classified as problem clusters, i.e. clusters specified in the original
problem, intermediate clusters, and solution clusters, i.e. clusters that are not
used as input for any rewrite rule. In Figure 5, the clusters with no incoming
arrows are problem clusters, and the cluster with no outgoing arrows is the
solution cluster.

The configurations associated with the solution cluster are the particular
solutions of the problem. If there are no configurations associated with the
solution cluster, then the problem is inconsistent. If there are one or more
configurations, then the problem is consistent.

From the generic solution we can also determine whether a problem is struc-
turally underconstrained, overconstrained or well-constrained. These classifica-
tions are usually defined in terms of the number of solutions, which may be
infinite, zero, or finite, respectively. However, such definitions are problematic

12

here, because, for certain valuations of the parameters of the problem, the prob-
lem may degenerate and should be classified differently. We therefore use the
following operational definitions:

• A problem is underconstrained if its generic solution has more than one
solution cluster or a single non-rigid solution cluster.

• A problem is overconstrained if any distance or angle constraint has more
than one source cluster. This is elaborated below.

• A problem is well-constrained if it is not underconstrained and not over-
constrained. Note that these conditions are not mutually exclusive.

These definitions depend on our particular solving algorithm, which is not
complete, and therefore they are not equivalent to other, more formal defini-
tions found in literature. However, our version of well-constrainedness is easily
decidable and of practical value when using our solver.
If any distance or angle is constrained in two or more clusters in the generic
solution, then the system may be overconstrained, depending on which clusters
these distances and angles occur in.

In particular, if two or more problem clusters, i.e. clusters determined from
constraints specified by the user, constrain the same distance or angle, then
those distances and angles are generally not consistent, and thus the problem
is overconstrained. However, if some distance or angle is constrained in several
clusters that are not all problem clusters, then the problem is not necessarily
overconstrained. The values of this distance or angle in different clusters, are
derived by rewrite rules from the original problem clusters, and these values
may in fact be the same in all clusters.

To determine whether a problem is overconstrained, we use the following
procedure. When adding new clusters to the generic solution, we determine, for
each distance or angle in that cluster, its source clusters, i.e. the first clusters in
the generic solution that constrain that distance or angle. The source cluster of
a distance or angle in some cluster can be found by following dependencies in the
generic solution in the reverse direction, checking for each cluster encountered
whether it constrains the distance or angle. A cluster that constrains a given
distance or angle is a source cluster, if no other cluster on which the cluster
depends already constrains that distance or angle.

If there is exactly one source for each distance or angle, then the system is
not overconstrained, because each rewrite rule ensures that all distance/angle
constraints in its input clusters are also satisfied in its output clusters. Other-
wise, if there is more than one source for a distance or angle, then there is no
guarantee that it will have the same value in the different source clusters, and
therefore the system is overconstrained.

During the cluster rewriting process, sets of clusters may be created by
the solver that constrain the same distances and angles, but do not result in an
overconstrained system. Consider, for example, the system in Figure 4(c). Here,
all the angles in the clusters Radial(A, [B, C, D, E, F]) and Radial(D, [C,A, E])

13

(a) problem (b) generic solution

Figure 6: An overconstrained 2D problem and its generic solution.

are also constrained by the cluster Scalable([A, B, C, D, E, F]). However, from
the generic solution in Figure 5, we can infer that for each angle, there is only
one source, in these cases a single problem cluster. Thus, the system is not
overconstrained.

In Figure 6(a), an overconstrained problem is shown. The generic solution
for this problem is shown in Figure 6(b). Here, the clusters Rigid([p1, p2, p3])
and Rigid([p1, p3, p4]) both constrain the distance δ(p1, p3). So, this distance
is determined twice, by different rewrite rule applications, using different input
clusters that do not constrain this distance. Thus, there are two source clusters
for the distance: Rigid([p1, p2, p3]) and Rigid([p1, p3, p4]), and therefore the
problem is overconstrained.

5 Incremental algorithm

The solving algorithm incrementally updates the generic solution of a constraint
problem whenever changes are made to the problem, i.e. clusters are added or
removed. The generic solution (symbol G in Algorithms 1, 2 and 3) is represented
by a bi-partite graph, in which nodes are clusters or rewrite rules. Directed edges
connect clusters and rewrite rules. If a cluster is an input cluster of a rewrite
rule, then there is an edge from the cluster to the rewrite rule. If a cluster is
the output cluster of a rewrite rule, then there is an edge from the rewrite rule
to the cluster.

The solving algorithm also keeps track of the set of active clusters, i.e. the
clusters that represent the problem after all rewriting steps so far (symbol A in
Algorithms 1, 2 and 3).

The generic solution and the active set are initially empty. When the user
adds a cluster to the problem (method AddCluster, see Algorithm 1), the cluster
is added to the generic solution and to the active set. Because it is not the
output of a rewrite rule, the cluster can be identified in the generic solution as a

14

Algorithm 1 Adding a cluster

method AddCluster (G,A,c)

G: generic solution

A: active set

c: cluster

begin

G.add(c)

A.add(c)

SearchRewrites(G,A,c)

end

Algorithm 2 Removing a cluster

method RemoveCluster (G,A,c)

G: generic solution

A: active set

c: cluster

begin

G.remove(c) (* also removes rewrite rules on c *)

A.remove(c)

for each x in DependentClusters(G,c)

RemoveCluster(x)

for each y in DeactivatedClusters(A,c)

A.add(y)

SearchRewrites(G,A,y)

end

problem cluster. The algorithm then searches for possible rewrite applications
on that new cluster, i.e. rewrite rule applications where the cluster is used as
input (method SearchRewrites, see Algorithm 3).

When a cluster is removed (method RemoveCluster, see Algorithm 2), it is
removed from the generic solution and the active set. All dependent clusters
are also removed from the generic solution. The dependent clusters (function
DependentClusters) are all clusters in the generic solution that are directly or
indirectly determined by rewrite rules that use the given cluster as input. The
algorithm must then determine a new set of active clusters. For this purpose, it
determines which clusters were removed from the active set when this particular
cluster was added (function DeactivatedClusters). The active set is restored
by re-adding those clusters to the active set. It is possible that after restoring the
active set, combinations of clusters can be rewritten (method SearchRewrites).

Searching for possible rewrite rule applications (method SearchRewrites,
see Algorithm 3) can be done efficiently because we search only for rewrites
on newly added clusters. Since each rewrite rule involves a small number of
overlapping clusters (i.e. clusters sharing one or more point variables), we con-
struct a subset of the set of active clusters consisting only of the newly added

15

Algorithm 3 Searching for rewrite rule applications

method SearchRewrites(G,A,c)

G: generic solution

A: active set

c: cluster

begin

subset := c + OverlappingClusters(A,c)

reference := ReferenceGraph(subset)

for each rule in AllRewriteRules

pattern := PatternGraph[rule]

matches = SubgraphIsomorphisms(pattern,reference)

for each match in matches

rewrite := instantiate rule from match

if IsProgressive(rewrite) then

G.add(rewrite) (* also adds output cluster *)

A.add(rewrite.output)

for each i in rewrite.inputs

if IsRedundant(i) then

A.remove(i)

SearchRewrites(rewrite.output)

end

cluster and the clusters that overlap with it (function OverlappingClusters),
and search in that subset for possible rewrite rule applications. The pattern
matching algorithm thus searches only through a small number of clusters and
variables.

The pattern matching algorithm used in our implementation is basically
a subgraph matching algorithm that finds all subgraph isomorphisms. The
subset of the active set in which we look for rewrite rule applications is con-
verted to a graph (function ReferenceGraph). The input pattern specified
by a rewrite rule is also represented by a graph (PatternGraph[rule]). For
each subgraph isomorphism returned by the graph matching algorithm (func-
tion SubgraphIsomorphisms), we determine which point variable is assigned to
which pattern variable, and from that the actual rewrite rule can be instanti-
ated.

For each possible rewrite rule application found, the algorithm first checks
whether it is progressive (function IsProgressive), and only if it is, the algo-
rithm adds it to the generic solution. A rewrite rule application is progressive if
it either increases the number of distances and angles constrained by the active
set, or reduces the number of active clusters. This ensures that the algorithm
does not add redundant clusters to the system, except to remove overconstrained
clusters.

Generally, when a rewrite rule is added to the generic solution, its output
cluster becomes part of the set of active clusters, and one or more input clusters
may be removed from the active set. A cluster is removed from the active set

16

intersection condition
Rigid(A) ∩ Rigid(B) = Rigid(A ∩ B) |A ∩ B| > 1
Rigid(A) ∩ Scalable(B) = Scalable(A∩ B) |A ∩ B| > 2
Rigid(A) ∩ Radial(pc, B) = Radial(pc, A ∩ B) pc ∈ A, |A ∩ B| > 2
Scalable(A) ∩ Scalable(B) = Scalable(A ∩ B) |A ∩ B| > 2
Scalable(A) ∩ Radial(pc, B) = Radial(pc, A ∩ B) pc ∈ A, |A ∩ B| > 2
Radial(pc, A) ∩ Radial(pc, B) = Radial(pc, A ∩ B) |A ∩ B| > 2

Table 1: Pairwise cluster intersections. If none of the cases listed here matches,
then the intersection is empty, i.e. the intersection contains no distances or
angles.

cluster distances angles

Rigid([p1, . . . , pn])
(

n
2

)

3
(

n
3

)

Scalable([p1, . . . , pn]) 0 3
(

n
3

)

Radial(pc, [p1, . . . , pn]) 0
(

n
2

)

Table 2: Number of distance and angles constrained by clusters.

if it is redundant, i.e. if all distances and angles constrained by it are already
constrained by the other clusters in the active set.

To determine whether a cluster is redundant (function IsRedundant), the al-
gorithm needs to determine whether the set of distances and angles constrained
by the cluster is a subset of the set of distances and angles constrained by the
other clusters in the active set. Determining these sets explicitly is too expen-
sive. Instead, we determine the number of distances and angles constrained
by the cluster, and the number of distances and angles constrained by each
intersection of the cluster with any other overlapping cluster in the active set.

We define the intersection of two clusters as a cluster that constrains only
those distances and angles that are constrained by both clusters. The intersec-
tion can be determined efficiently using the rules listed in Table 1. For example,
given two clusters, Rigid([p1, p2, p3]) and Rigid([p2, p3, p4]), the intersection is
determined by the first rule in the table as Rigid([p2, p3]). The table shows how
the type of the intersection cluster is determined by the types of the original
clusters. The set of point variables constrained by the intersection cluster is the
set of point variables shared by the original clusters. The set of shared points
must satisfy additional conditions to ensure that the intersection cluster is a
valid cluster, e.g. a minimum number of shared points is needed and the centre
point of two radial clusters must be the same.

The number of distances and angles constrained by a cluster can be deter-
mined from Table 2. Note that the number of distances and angles constrained
by a cluster is larger than the number of constraints typically needed for a

17

well-constrained system. However, because the allowable combinations of val-
ues of the distances and angles constrained by a cluster, are determined by a
configuration, these values are always consistent.

If the number of distances and angles constrained by a cluster is larger than
the total number of distances and angles constrained by the intersections of the
cluster with each other overlapping cluster in the active set, then the cluster is
not redundant. Otherwise, the number of distances and angles in the cluster is
equal to the total number of distances and angles in the intersections (it cannot
be smaller), and the cluster is redundant.

After a new rewrite rule has been added to the generic solution, the algorithm
is called recursively to find possible rewrites on the output cluster of the added
rewrite rule. Note that, for compactness, a recursive algorithm is given here,
but our implementation is iterative, using a stack of clusters to be processed.

The generic solution of a problem can be used to determine its particular
solutions, by evaluating the procedural part of each rewrite rule in the generic
solution, for each combination of its input clusters’ configurations. This may also
be done in an incremental way. When the set of configurations associated with
a problem cluster is changed, the dependent rewrite rules can be determined
from the generic solution, i.e. the rules which use this cluster as input cluster.
Only these rewrite rules need to be re-evaluated.

The determining factor for the complexity of the algorithm is the subgraph
matching algorithm (SubgraphIsomorphisms). In general, subgraph isomor-
phism is an NP-complete problem, but for many problem instances, heuristic
algorithms can find matches more quickly, see e.g. [17]. Also, the matching is
simplified a great deal by taking into account the types of clusters. Further,
because no rewrite rule currently requires more than three input clusters, and
because of the incremental nature of the algorithm, we only match against pairs
and triples of clusters that contain the cluster last added to the active set. Fi-
nally, we are not interested in all possible permutations of pattern variables in
rewrite rules, because variables in clusters are not ordered (with the exception
of the first variable of radial clusters), thus we do not have to generate all pos-
sible matches. The actual cost of the algorithm is therefore much lower than
the theoretical bound for general subgraph isomorphism.

The performance of the solver was tested on a set of randomly generated
well-constrained 3D problems. The problems were created by first constructing
simple well-constrained systems using distance constraints only. Then, angles
were randomly introduced by replacing some distances in triangular configu-
rations. Finally, we replaced combinations of angle constraints that formed
scalable and radial clusters with randomly selected angle constraints from those
clusters, resulting in problems with non-triangular subproblems. The generated
set of problems seems to represent the class of problems that can be solved quite
well, since all rewrite rules have been used in solving them.

Figure 7 shows the average time for completely solving a problem with a
given number of variables, and several incremental solving times for randomly
removing one constraint from, and adding another to, these problems. As can be
seen, complete solving time increases approximately quadratically with the size

18

Figure 7: Plot of average complete solving time and all incremental solving
times, against the number of problem variables.

19

of the problem. Performance for incrementally solving random changes varies
wildly, but is typically lower than the average time for solving the complete
system.

The solver was implemented in Python, using only standard libraries. The
experiments were performed on a a 2.6 Ghz Pentium IV system. Significant
speedups should be possible by using special libraries for graph matching and
vector and matrix algebra.

In these experiments, the measured times are for determining the generic
solution. The number of particular solutions of a problem may be exponential
to the number of variables, and computing all solutions may be very expen-
sive. For most applications, however, not all solutions are required or desirable.
Therefore, a solution selection mechanism is needed to reduce the number of
solutions, and thus reduce the computation time.

6 Solution selection

Solution selection is an important problem in geometric constraint solving; it is
also known as the multiple-solution problem or the root identification problem.
The number of solutions for geometric constraint problems is generally expo-
nential to the number of geometric elements. In fact, the problem of finding all
real solutions of an arbitrary system of geometric constraints has been shown
to be NP-complete [6]. Therefore, various solution selection schemes have been
proposed, e.g., interactive approaches [5, 18], genetic algorithms [19] and sketch-
based methods [20]. Our solver supports two solution selection schemes, namely
declarative solution selection [21] and prototype-based solution selection [22].

Declarative solution selection is supported in our solver by selection con-
straints. These specify the orientation of a set of points. In 2D, solutions can
be selected based on whether a set of three points {p1, p2, p3} is oriented clock-
wise or counter-clockwise, as shown in Figure 8(a) and Figure 8(b), respectively.
In 3D, the handedness of a set of points is a useful selection criterion. A set of
points {p1, p2, p3, p4} can be classified as left-handed or right-handed, as shown
in Figure 8(c) and Figure 8(d), respectively.

In general, the orientation of a set of n+1 points in R
n can be determined by

taking one point as a reference, and computing the determinant of the ordered
set of offset vectors for the other points. We define the orientation of an ordered
set of points {p1, ..., pn+1} as:

Orientation(p1, ..., pn+1) = sign(Det[p2 − p1, ..., pn+1 − p1])

The set of points is positively oriented if the determinant is positive, negatively
oriented if the determinant is negative, and indeterminate if the determinant is
zero. Note that the points may be represented as either the rows or the columns
of the matrix of which the determinant is computed.

Obviously, solution selection should take place as soon as possible, i.e. as
soon as enough information is available to evaluate the selection constraint. In

20

(a) clockwise (b) counter-clockwise (c) left-handed

(d) right-handed

Figure 8: Solution selection constraints.

our solver, selection constraints are evaluated as soon as a cluster has been
determined that contains a superset of the point variables in the constraint.

There are two problems with the declarative approach to solution selection.
The first problem is that, in the worst case, all solutions of a geometric constraint
problem have to be generated, before selection constraints can be evaluated. The
second problem is that a large number of selection constraints generally needs to
be specified, in order to determine a single solution. In addition, this solution, as
a function of the parameters of the problem, is often discontinuous. Discontin-
uous behaviour is undesirable for most parametrisations. For example, in [23],
requirements are identified for freeform feature classes and their instances. For
users of the feature class, who generally have no knowledge of the constraints
used for the parametrisation, discontinuities in the behaviour of the feature are
unexpected and undesirable.

An alternative method to declarative solution selection, which does not suf-
fer from these problems, is prototype-based solution selection. A prototype is
simply a configuration of all the geometric variables in the problem that ’looks
like’ the desired solutions. Typically, the prototype is obtained from a sketch
created by the user. In [20] a formal framework is presented for sketch-based
solution selection.

We use a prototype-based solution selection mechanism that always deter-
mines at most one solution, the so-called intended solution, described in [22].
The intended solution satisfies the following properties:

• the intended solution is a continuous function of the parameters of the
problem

• the intended solution uniquely resembles a given prototype.

21

C1

C2

C3

C4

s2

s3

s1

configuration space

p
prototype

intended
solution

Figure 9: The resemblance relation partitions the configuration space into a
number of equivalence classes Ci. The intended solution (s2) is the solution
that is in the same equivalence class (C2) as the prototype (p).

The first property ensures that there is a predictable and intuitive relation
between the intended solution and the parameters of the problem. The second
property ensures that there is an intuitive relation between the intended solution
and the prototype. A unique resemblance between the intended solution and
the prototype means that other solutions, found for the same parameter values,
must not resemble the prototype, by some definition of resemblance. Thus, the
intended solution is uniquely determined by the prototype.

Resemblance is defined by a resemblance relation. This relation is an equiva-
lence relation, which partitions the configuration space into a number of equiv-
alence classes. The intended solution is the solution in the same equivalence
class as the prototype. This is illustrated in Figure 9.

For some combinations of the parameter and prototype, there may not be
an intended solution, even though a real solution exists. Consider, for example,
the 2D system in Figure 10. For any parameter value d ≥ 3, the solution is a
continuous function of d. If, however, we instantiate the problem with parameter
d = 2, there is no solution in the same equivalence class, i.e. there is no solution
for d = 2 that can be reached continuously from the previous solutions. Such
behaviour is intuitive for most applications, but if it is not desirable, declarative
solution selection can be used.

The intended solution can be found by using the cluster rewriting algorithm
presented in the previous sections. Basically, for each subproblem that is solved,
selection constraints are generated, such that a single solution is selected for
each subproblem. The selection constraints that are generated for a specific
subproblem depend on the type of the subproblem, i.e. the specific rewrite rule,
and the prototype. Since at most one solution is found for each subproblem,
and no back-tracking search is needed, computing the intended solution in this
way is inexpensive.

For example, consider the 2D system in Figure 10 again. This problem
can be decomposed into three simple triangular problems: ABC, BCD and
ADE. To solve each of these subproblems, the intersection of two circles is
determined, as shown in Figure 11. The two solutions can be distinguished

22

A

B

C

D

E

(a) prototype

A

B C

D

E

d=4

(b)

d=3

A

B C

D

E

(c)

d=2

B C

D

E

A

(d)

Figure 10: A constraint problem with a prototype (a) and a distance parameter
d. The intended solution exists only for d ≥ 3 (b, c). For d = 2 there is a
solution, but there is no intended solution (d).

2C

C1

d2 d3

d1 BA

Figure 11: A simple triangular subproblem, where three distance constraints
are given. The solution can be found by intersecting two circles.

by the orientation of the points in the solution; either the points are counter-
clockwise oriented, i.e. ABC1 or the points are clockwise oriented, i.e. ABC2.
If in the prototype the points ABC are oriented clockwise, then a selection
constraint Clockwise(A, B, C) is added to the system. If, on the other hand,
the points in the prototype are oriented counter-clockwise, then a selection con-
straint CounterClockwise(A, B, C) is added. If the orientation of the prototype
points is clockwise nor counter-clockwise, i.e. the prototype points are on a line,
then we must make an arbitrary choice, or warn the user. For the other sub-
problems in the example, the same procedure is followed.

In general, for each type of subproblem, selection constraints can be gen-
erated that can distinguish between the possible solutions of the subproblem.
The particular selection constraint that is satisfied by the prototype is added to
the problem. For most 2D subproblems, the Clockwise and Counterclockwise

selection constraints can be used, and for most 3D subproblems the Lefthanded

and Righthanded selection constraints. For some subproblems, inequality con-
straints on angles are used.

In [22], it is shown, for a somewhat simpler constraint solver, which only
recognises triangular and tetrahedral rigid subproblems, that the intended so-
lution can be found using selection constraints. Basically, we formally define

23

the properties that the resemblance relation must satisfy, in order to find the
intended solution. For each type of subproblem, the selection constraints that
are used define a resemblance relation. First we show, for several types of sub-
problems, that these resemblance relations satisfy the given properties. Then
we show that by combining subproblems, a resemblance relation results for the
whole problem, which also satisfies those properties. Thus, the solution found in
this way is the intended solution. For the solver discussed in this paper, which
can also find non-rigid clusters, we believe that a similar proof can be given.

7 Constraints on 3D primitives

So far, we have only considered systems of distance and angle constraints on
points, in particular, systems of clusters. In typical CAD models, however,
constraints are imposed on other types of geometric primitives, e.g. lines, planes,
spheres and cylinders.

In this section, we present a mapping from constraint systems on primitives
to a system of distance and angle constraints on points. Basically, a primitive is
represented by a small number of points, e.g. a line can be represented by two
points. Constraints on primitives can then be expressed by distance and angle
constraints on points. A system of distance and angle constraints on points, in
turn, can be represented by a system of clusters, which can be solved with the
solving algorithm presented in the previous sections.

The DOF of a primitive cannot always be represented by a set of point
variables. For example, a line in 3D has 4 DOF. It cannot be represented by a
single point variable, which has 3 DOF, or by two point variables, which together
have 6 DOF. However, we can represent the DOF of a system of primitives and
constraints, at least in many cases where the system is well-constrained. In such
cases, the solutions of a particular system of constraints on points can be used
to construct the solutions of a particular system of constraints on primitives.
The key idea is that the representation of a primitive depends on the number
of points that are constrained to be coincident with it.

Figure 12 illustrates the mapping of lines with different numbers of coincident
points. A line L1, with no constraints imposed on it, is represented by two
points v1 and v2, with an arbitrary distance constraint such that δ(v1, v2) 6= 0.
The represented line is the line through the points v1 and v2. By itself, this
system is well-constrained. If a single point p is constrained coincident with a
line L2, by a constraint Coincident(p, L2), then line L2 is represented by that
point p and another point v. Again, this system is well-constrained. If two
points are constrained coincident with a line L3, i.e. Coincident(p1, L3) and
Coincident(p2, L3), then both points are used in the representation, i.e. line
L3 is represented by p1 and p2. If these points are part of a well-constrained
system, then the line is also well-constrained. Note that the distance between
the points is not constrained by the mapping, because if the system is well-
constrained, then the distance between the points is already determined. If
more than two points are constrained with a line L4, i.e. Coincident(pi, L4) for

24

(a) lines with coincident points

(b) mapping

Figure 12: Mapping of lines (L1 − L4), with different numbers of coincident
points

1 <= i <= n with n > 2, then only the first two points, p1 and p2 are used in
the representation. The other points are constrained to be coincident with the
line, using an angle constraint that specifies that the angle between points is
either 0 or π: ∡(p1, p2, pi) = 0|π for 3 ≤ i ≤ n. Such constraints with alternative
values can be represented by clusters with several configurations.

The mapping of planes is similar to the mapping of lines. A plane f , with
no constraints imposed on it, is represented by two point variables, v1 and v2,
and a distance constraint δ(v1, v2) 6= 0. The represented plane is the plane
through v1 with normal v2 − v1. If there is a constraint Coincident(p, f), then
the plane is represented by p and a point v, with a non-zero distance constraint
between them. Any other points p∗ constrained coincident with the plane are
constrained in plane by a constraint ∡(v, p, p∗) = 1

2π.
For a sphere, we have to consider its centre point and its radius, since these

are often constrained in applications. Fixed radius spheres are easily mapped.
The centre of the sphere is represented by a point variable, and any point
constrained coincident with the sphere is constrained with a distance equal to
the given radius.

Variable radius spheres cannot be easily represented, because all points co-
incident with the sphere must have an equal, unknown distance from its centre.
Such equalities are not supported by our solver, because distance constraints
must have a fixed parameter value. In some cases, however, variable radius
circles, spheres or cylinders can be supported, by using propagation to solve
the equality constraint. If the radius can be determined by first solving other
constraints in the system, then this value can simply be propagated to those
distance constraints that should be equal to the radius. However, these cases

25

2

1f

fp

s

point p

plane f1

plane f2

sphere s, radius r

p on s

p on f1

p on f2

’n2
’p

’n1

’s

r

1

1

R(p) = p′

R(f1) = {p′, n′

1}
δ(p′, n′

1) = 1
R(f2) = {p′, n′

2}
δ(p′, n′

2) = 1
R(s) = s′

δ(s′, p′) = r

Figure 13: Mapping plane and sphere primitives with coincidences to constraints
on points.

will not be further considered here.
Table 3 shows the different representations for primitives depending on the

number of points constrained coincident with it. For a sphere, we also consider
the case where a point is concident with its centre, and for a cylinder, the case
where a line is coincident with its axis. The function R maps a primitive to
a set of point variables and constraints on those variables, depending on the
constraints imposed on the primitive.

Figure 13 shows an example of how a set of primitives with coincidence
constraints can be mapped to a system of constraints on points.

More general constraints on primitives are mapped to a set of points, a set
of coincidence constraints between the primitives and those points, and a set of
distance and angle constraints between those points. The representation of the
primitive is determined by the points that are constrained coincident with it.

For example, an angle between two lines ∠(m1, m2) = φ, where 0 < φ < π,
is mapped to three points, p1, p2 and px, and a number of constraints, as shown
in Figure 14. The constraint may or may not affect the representations of the
lines, depending on the constraints already present in the system. If no other
constraints are imposed on the lines, m1 is represented by p1 and px, and m2

is represented by p2 and px. The angle between two planes can be constrained
by constraining the angle between the normals of those planes, using the same
construction.

26

primitive constraints mapping (R)

point p1 - R(p1) = v1

point p2 Coincident(p1, p2) R(p2) = R(p1)

line l1 - R(l1) = {v1, v2}
δ(v1, v2) = 1

line l2 Coincident(l2, p) R(l2) = {R(p), v}
δ(R(p), v) = 1

line l3 Coincident(l3, p1) R(l3) = {R(p1),R(p2)}
Coincident(l3, p2)

line l4 Coincident(l4, p1) R(l4) = {R(p1),R(p2)}
Coincident(l4, p2) ∡(R(p1),R(p2),R(p∗)) = 0|π
Coincident(l4, p∗)

plane f1 - R(f1) = {v1, v2}
δ(v1, v2) = 1

plane f2 Coincident(f2, p) R(f2) = {R(p), v}
δ(R(p), v) = 1

plane f3 Coincident(f3, p1) R(f3) = {R(p1), v}
Coincident(f3, p∗) δ(R(p1), v) = 1

∡(v,R(p1),R(p∗)) = 1

2
π

sphere s1 Radius(s1) = r R(s1) = v

Coincident(s1, p∗) δ(v,R(p∗)) = r

sphere s2 Radius(s2) = r R(s2) = R(p1)
Center(s2, p1) δ(R(p1),R(p∗)) = r

Coincident(s2, p∗)

cylinder c1 Radius(c1) = r R(c1) = {v1, v2}
Coincident(c1, p∗) δ(v1, v2) = 1.0

δ(v∗,R(p∗)) = r

∡(v1, v∗,R(p∗)) = 1

2
π

cylinder c2 Radius(c2) = r R(c2) = R(l)
Axis(c2, l) Coincident(v∗, l)
Coincident(c2, p∗) δ(v∗,R(p∗)) = r

Table 3: Mapping of primitives with different incidence constraints. Points are
represented by p∗, lines by l∗, planes by f∗, spheres by s∗ and cylinders by c∗,
where ∗ can be any integer.

Coincident(p1, m1)
Coincident(p2, m2)
Coincident(px, m1)
Coincident(px, m2)
δ(px, p1) = 1.0
δ(px, p2) = 1.0
∠(p1, px, p2) = φ

Figure 14: Mapping of an angle between lines, ∠(m1, m2) = φ.

27

In general, many useful constraints on primitives can be mapped in this
way, and the resulting systems of constraints on points can be solved using the
cluster-based approach presented in this paper. From the solutions of the latter
systems, the geometry of the primitives can be completely determined.

8 Conclusions

In this paper we have introduced two non-rigid types of clusters, scalable and
radial clusters, which can be used, together with traditional rigid clusters, to
solve geometric constraint problems. Using a simple cluster rewriting approach,
we can solve a larger class of problems than is possible with only rigid clusters.
We have presented an incremental algorithm for this.

We have also presented methods for solution selection in the new solving
approach. These can reduce the number of solutions found by the solver in an
efficient way.

Finally, we have presented a way to solve systems of constraints on 3D
primitives. The basic cluster rewriting algorithm can only solve systems of
constraints on points. By mapping constraints on 3D primitves, such as planes,
spheres and cylinders, to a system of distance and angle constraints on point
variables, we can also solve such constraints.

The advantages of this approach over more general solving approaches, such
as DOF-based decomposition, are that large problems can be solved efficiently,
and that an incremental solving algorithm is easy to implement.

We have not yet done any extensive comparison of our solver to other solving
algorithms. It would be interesting to see how it compares in terms of the class
of problems that can be solved and in terms of algorithmic complexity.

The set of rewrite rules for 3D problems that we have developed is not
complete; there are known well-constrained geometric constructions that cannot
be solved with the current rule set. It is not even known whether there exists a
complete set of rewrite rules that can be used to solve every 3D system of rigid,
scalable and radial clusters. This is related to the more fundamental problem
whether a generic, combinatorial description can be given of rigidity in 3D [11].

Altogether, we believe that the use of non-rigid clusters in geometric con-
straint solving is a promising approach to solve more complex systems more
efficiently.

Acknowledgements

We thank Chris Hoffmann and two anonymous reviewers for their helpful com-
ments.

H.A. van der Meiden’s work has been supported by the Netherlands Organ-
isation for Scientific Research (NWO).

28

References

[1] C. M. Hoffmann, A. Lomonosov, M. Sitharam, Decomposition plans for ge-
ometric constraint systems, Part I: performance measures for CAD, Journal
of Symbolic Computation 31 (4) (2001) 376–408.

[2] W.-T. Wu, Basic principles of mechanical theorem proving in elementary
geometries, Journal of Automated Reasoning 2 (3) (1986) 221–252.

[3] C. Durand, C. M. Hoffmann, A systematic framework for solving geometric
constraints analytically, Journal of Symbolic Computation 30 (5) (2000)
493–519.

[4] G. Laman, On graphs and rigidity of plane skeletal structures, Journal of
Engineering Mathematics 4 (4) (1970) 331–340.

[5] W. Bouma, I. Fudos, C. Hoffmann, J. Cai, R. Paige, A geometric constraint
solver, Computer-Aided Design 27 (6) (1995) 487–501.

[6] I. Fudos, C. M. Hoffmann, A graph-constructive approach to solving sys-
tems of geometric constraints, ACM Transactions on Graphics 16 (2) (1997)
179–216.

[7] C. M. Hoffmann, P. J. Vermeer, Geometric constraint solving in ℜ2 and ℜ3,
in: D. Du, F. Hwang (Eds.), Computing in Euclidean Geometry, Second
Edition, World Scientific Publishing, Singapore, 1995, pp. 266–298.

[8] I. Fudos, C. M. Hoffmann, Correctness proof of a geometric constraint
solver, International Journal of Computational Geometry and Applications
6 (4) (1996) 405–420.

[9] R. Joan-Arinyo, A. Soto, A correct rule-based geometric constraint solver,
Computers & Graphics 21 (5) (1997) 599–609.

[10] R. Joan-Arinyo, A. Soto, S. Vila-Marta, J. Vilaplana-Pasto, Revisiting de-
composition analysis of geometric constraint graphs, Computer-Aided De-
sign 36 (2) (2004) 123–140.

[11] M. Sitharam, Wellformed systems of point incidences for resolving collec-
tions of rigid bodies, International Journal of Computational Geometry and
Applications 16 (5) (2006) 591–615.

[12] G. A. Kramer, Solving Geometric Constraint Systems: a Case Study in
Kinematics, The MIT Press, Cambridge, MA, USA, 1992.

[13] C. M. Hoffmann, A. Lomonosov, M. Sitharam, Decomposition plans for
geometric constraint systems, Part II: new algorithms, Journal of Symbolic
Computation 31 (4) (2001) 409–427.

[14] X. Gao, Q. Lin, G. Zhang, A C-tree decomposition algorithm for 2D and 3D
geometric constraint solving, Computer-Aided Design 38 (1) (2006) 1–13.

29

[15] D. Podgorelec, A new constructive approach to constraint-based geometric
design, Computer-Aided Design 34 (11) (2002) 769–785.

[16] P. Schreck, E. Schramm, Using invariance under the similarity group to
solve geometric constraint systems, Computer-Aided Design 38 (5) (2006)
475–484.

[17] J. Ullmann, An algorithm for subgraph isomorphism, Journal of the ACM
23 (1) (1976) 31–42.

[18] M. Sitharam, J.-J. Oung, Y. Zhou, A. Abree, Geometric constraints within
feature hierarchies, Computer-Aided Design 38 (1) (2006) 22–38.

[19] R. Joan-Arinyo, M. V. Luzón, A. Soto, Genetic algorithms for root multise-
lection in constructive geometric constraint solving, Computers & Graphics
27 (1) (2003) 51–60.

[20] C. Essert-Villard, P. Schreck, J.-F. Dufourd, Sketch-based pruning of a
solution space within a formal geometric constraint solver, Artificial Intel-
ligence 124 (1) (2000) 139–159.

[21] B. Bettig, J. Shah, Solution selectors: a user-oriented answer to the mul-
tiple solution problem in constraint solving, Journal of Mechanical Design
125 (3) (2003) 443–451.

[22] H. A. van der Meiden, W. F. Bronsvoort, An efficient method to determine
the intended solution for a system of geometric constraints, International
Journal of Computational Geometry and Applications 15 (3) (2005) 279–
298.

[23] E. van den Berg, H. A. van der Meiden, W. F. Bronsvoort, Specification
of freeform features, in: G. Elber, V. Shapiro (Eds.), Proceedings of Solid
Modelling ’03, Eighth ACM Symposium on Solid Modeling and Applica-
tions, June 16–20, Seattle, Washington, USA, ACM Press, New York, NY,
USA, 2003, pp. 56–64.

A Appendix

A collection of rewrite rules for clusters is presented here. Each rewrite rule
consists of a pattern and a procedure. The pattern is of the form: C1 ∪ C2 ∪
. . .∪Cn−1 → Cn. Here C1 to Cn−1 represent input clusters and Cn represents the
output cluster. Each cluster in the pattern specifies a type, i.e. Rigid, Scalable

or Radial, and a set of variables. A cluster with a fixed number of variables
may be specified, e.g. Rigid([p1, p2]) or a cluster with an unknown number of
variables, using an ellipsis, e.g. Rigid([p1, p2, . . .]). A radial cluster specifies one
center variable and a set of radial variables, e.g. Radial(p1, [p2, p3]). A set of
variables of input clusters may also be given a name, e.g. Rigid(A = [p1, p2, . . .]).

30

Such named sets of variables may be combined in the specification of the output
cluster, e.g. Rigid(A) ∪ Rigid(B) → Rigid(A ∪ B).

The procedure specified by a rule is a function c1 × c2 × . . . × cn−1 → cn.
Here c1 to cn−1 represent input configurations and cn represents the output
configuration. The number of configurations in the procedure is always equal
to the number of clusters specified in the pattern. In a procedure, the union of
two configurations, represented as c1 ∪ c2, is a configuration containing all the
point variables in c1 and c2. Point variables shared by c1 and c2 take the value
specified by c1.

We present a set of rules applicable only in 2D (Subsection A.1), a set of
rules applicable in 2D and 3D (Subsection A.2), and a set of rules applicable
only in 3D (Subsection A.3).

A.1 2D rewrite rules

Rule 1 Merge two rigid clusters with two shared points

Pattern: Rigid(A = [p1, p2, . . .]) ∪ Rigid(B = [p1, p2, . . .])
→ Rigid(A ∪ B)

Procedure: c1 × c2 → cR

T = rotation and translation such that p1 and p2 in c2

are mapped onto p1 and p2 in c1

cR = c1 ∪ T (c2)

Rule 2 Merge two radial clusters with two shared points

Pattern: Radial(px, A = [p1, . . .]) ∪ Radial(px, B = [p1, . . .])]
→ Radial(px, A ∪ B)

Procedure: c1 × c2 → cR

T = rotation, translation and scaling, such that px and p1 in c2

are mapped onto px and p1 in c1

cR = c1 ∪ T (c2)

Rule 3 Merge two scalable clusters with two shared points

Pattern: Scalable(A = [p1, p2, . . .]) ∪ Scalable(B = [p1, p2, . . .])
→ Scalable(A∪ B)

Procedure: c1 × c2 → cR

T = rotation, translation and scaling such that p1 and p2 in c2

are mapped onto p1 and p2 in c1

cR = c1 ∪ T (c2)

31

A.2 2D/3D rewrite rules

Rule 4 Derive a triangle from three distances

Pattern: Rigid([p1, p2, . . .]) ∪ Rigid([p1, p3, . . .]) ∪ Rigid([p2, p3, . . .])
→ Rigid([p1, p2, p3])

Procedure: c1 × c2 × c3 → cR

cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = intersection

circle centre cR(p1) radius δ(c2(p3), c2(p1))
circle centre cR(p2) radius δ(c3(p3), c3(p2))

Rule 5 Derive a triangle from two distances and an angle (by rotation)

Pattern: Rigid([p1, p2, . . .]) ∪ Radial(p2, [p1, p3, . . .]) ∪ Rigid([p2, p3, . . .])
→ Rigid([p1, p2, p3])

Procedure: c1 × c2 × c3 → cR

φ = ∡(c2(p1), c2(p2), c2(p3))
cR(p1) = (δ(c1[p1], c1[p2]), 0)
cR(p2) = (0, 0)
cR(p3) = δ(c3[p3], c3[p2])(cos(φ), sin(φ))

Rule 6 Derive a triangle from two distances and an angle (by intersection)

Pattern: Rigid([p1, p2, . . .]) ∪ Radial(p2, [p1, p3, . . .]) ∪ Rigid([p1, p3, . . .])
→ Rigid([p1, p2, p3])

Procedure: c1 × c2 × c3 → cR

cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = intersection

circle centre c1(p1) radius δ(c3(p3), c3(p1))
ray from c1(p2) direction ∡(c2(p1), c2(p2), c2(p3))

Rule 7 Derive a scalable cluster from two radial clusters

Pattern: Radial(p1, [p3, p2, . . .]) ∪ Radial(p2, [p1, p3, . . .])
→ Scalable([p1, p2, p3])

Procedure: c1 × c2 → cR

cR(p1) = (0, 0, 0)
cR(p2) = (1, 0, 0)
cR(p3) = intersection

ray from cR(p1) direction ∡(c1(p3), c1(p1), c1(p2))
ray from cR(p2) direction π − ∡(c2(p1), c2(p2), c2(p3))

32

Rule 8 Derive a rigid cluster from a scalable and a rigid cluster with two shared
points

Pattern: Scalable(A = [p1, p2, . . .]) ∪ Rigid([p1, p2, . . .]) → Rigid(A)
Procedure: c1 × c2 → cR

T = scale configuration by δ(c2(p2),c2(p1))
δ(c1(p2),c1(p1))

cR = T (c1)

A.3 3D rewrite rules

Rule 9 Merge two rigid clusters with three shared points

Pattern: Rigid(A = [p1, p2, p3, . . .]) ∪ Rigid(B = [p1, p2, p3, . . .])
→ Rigid(A ∪ B)

Procedure: c1 × c2 → cR

T = rotation and translation such that p1, p2 and p3 in c2

are mapped onto p1, p2 and p3 in c1

cR = c1 ∪ T (c2)

Rule 10 Merge two scalable clusters with three shared points

Pattern: Scalable(A = [p1, p2, p3, . . .]) ∪ Scalable(B = [p1, p2, p3, . . .])
→ Scalable(A∪ B)

Procedure: c1 × c2 → cR

T = rotation, translation and scaling such that p1, p2 and p3 in c2

are mapped onto p1, p2 and p3 in c1

cR = c1 ∪ T (c2)

Rule 11 Merge two radial clusters with three shared points

Pattern: Radial(px, A = [p1, p2, . . .]) ∪ Radial(px, B = [p1, p2, . . .])
→ Radial(px, A ∪ B)

Procedure: c1 × c2 → cR

T = rotation, translation and scaling such that px, p1 and p2 in c2

are mapped onto px, p1 and p2 in c1

cR = c1 ∪ T (c2)

Rule 12 Derive a tetrahedron from three rigid clusters

Pattern: Rigid([p1, p2, p3, . . .]) ∪ Rigid([p1, p2, p4, . . .]) ∪ Rigid([p3, p4, . . .])
→ Rigid([p1, p2, p3, p4])

Procedure: c1 × c2 × c3 → cR

33

cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = c1(p3)
cR(p4) = intersection

sphere centre cR(p1) radius δ(c2(p4), c2(p1))
sphere centre cR(p2) radius δ(c2(p4), c2(p2))
sphere centre cR(p3) radius δ(c3(p4), c3(p3))

Rule 13 Derive a radial cluster from three angles

Pattern: Radial(px, [p1, p2, . . .]) ∪ Radial(px, [p1, p3, . . .]) ∪ Radial(px, [p2, p3, . . .])
→ Radial(px, [p1, p2, p3])

Procedure: c1 × c2 × c3 → cR

cR(px) = c1(px)
cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = intersection

cone apex cR(px) axis cR(p1) − cR(px) angle ∡(c2(p1), c2(px), c2(p3))
cone apex cR(px) axis cR(p2) − cR(px) angle ∡(c3(p2), c3(px), c3(p3))
sphere centre cR(px) radius 1

Rule 14 Derive a rigid cluster from two rigid clusters with two shared points
and an angle

Pattern: Rigid([p1, p2, p3, p4, . . .]) ∪ Rigid([p3, p4, p5, . . .]) ∪ Radial(p1, [p2, p5, . . .])
→ Rigid([p1, p2, p3, p4, p5])

Procedure: c1 × c2 × c3 → cR

cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = c1(p3)
cR(p4) = c1(p4)
cR(p5) = intersection

cone apex cR(p1) axis cR(p2) − cR(p1) angle ∡(c3(p5), c3(p1), c3(p2))
cylinder axis cR(p4) − cR(p3) radius distance(c2(p5), line(c2(p4), c2(p3)))
plane normal cR(p4) − cR(p3) through cR(p3) + (c2(p5) − c2(p3)) · (c2(p4) − c2(p3))

34

